pytorch应用之——纸币识别(一)

数据集https://pan.baidu.com/s/1oZ4yMlTU3YwnX9KR0huzyQ 提取码:k7bc

我分几个部分跟大家讲解:

1:算法思想(这个很简单)

2:代码详解

一:算法思想

这里数据集一共有39620张,而且背景单一,所以纸币面值的识别不是一个很难的问题。我用resnet18(自己稍微改了一些结构,影响不大)去训练这个数据集,迭代24次可以达到99.96%的精度。但这里要注意resnet不需要用预训练模型,然后resnet的最后的全连接改成number=9(因为数据集的label只有9种)。细节我会在代码中给大家介绍。

description

二.代码详解

代码部分我主要分以下几点讲解:

1:数据加载预处理

2:model修改

3:train过程。

1.数据加载预处理

class MyDataset(Dataset):
    def __init__(self, path):
        self.filenames 
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值