52 个深度学习目标检测模型汇总,论文、源码一应俱全!(附链接)

目标检测作为计算机视觉中的一个重要分支,近些年来随着神经网络理论研究的深入和硬件 GPU 算力的大幅度提升,一举成为全球人工智能研究的热点,落地项目也最先开始。

 

纵观 2013 年到 2020 年,从最早的 R-CNN、OverFeat 到后来的 SSD、YOLO v3 再到去年的 M2Det,新模型层出不穷,性能也越来越好!本文将完整地总结 52 个目标检测模型极其性能对比,包括完备的文献 paper 列表。

 

首先直奔主题,列出这 52 个目标检测模型(建议收藏):

这份目标检测超全的技术路线总结来自于 GitHub 上一个知名项目,作者是毕业于韩国首尔国立大学电气与计算机工程专业的 Lee hoseong,目前已经收获 7.3k star。

 

该项目地址是:

https://github.com/hoya012/deep_learning_object_detection

该技术路线纵贯的时间线是 2013 年到 2020 年初,上图总结了这期间目标检测所有具有代表性的模型。图中标红的部分是相对来说比较重要,需要重点掌握的模型。

更新日志

值得一提的是红色石头早在去年年初的时候已经发文给大家推荐过这个项目,作者也一直在更新,截至 2020 年 2 月,作者主要的更新如下:

  • 2019.2:更新3篇论文

  • 2019.3:更新图表和代码链接

  • 2019.4:更新 ICLR 2019 和 CVPR 2019 论文

  • 2019.5:更新 CVPR 2019 论文

  • 2019.6:更新 CVPR 2019 论文和数据集论文

  • 2019.7:更新 BMVC 2019 论文和部分 ICCV 2019 论文

  • 2019.9:更新 NeurIPS 2019 论文和 ICCV 2019 论文

  • 2019.11:更新部分 AAAI 2020 论文和其它论文

  • 2020.1:更新 ICLR 2020 论文和其它论文

下面详细介绍!

模型性能对比表

由于硬件不同(例如 CPU、GPU、RAM 等),来比较 FPS 往往不够准确。更合适的比较方法是在同一硬件配置下测量所有模型的性能。以上所有模型的性能对比结果如下:

从上面的表格中,可以清楚看到不同模型在 VOC07、VOC12、COCO 数据集上的性能表现;同时列出了模型论文发表来源。

下面列举一些重点标红的模型进行简要介绍。

模型论文篇

2014 年

R-CNN

 

Rich feature hierarchies for accurate object detection and semantic segmentation | [CVPR' 14]

 

论文:

https://arxiv.org/pdf/1311.2524.pdf

 

官方代码 Caffe:

https://github.com/rbgirshick/rcnn

OverFeat

 

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks | [ICLR' 14]

 

论文:

https://arxiv.org/pdf/1312.6229.pdf

 

官方代码 Torch:

https://github.com/sermanet/OverFeat

2015 年

Fast R-CNN

 

Fast R-CNN | [ICCV' 15]

 

论文:

https://arxiv.org/pdf/1504.08083.pdf

 

官方代码 caffe:

https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

 

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks | [NIPS' 15]

 

论文:

https://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

 

官方代码 caffe:

https://github.com/rbgirshick/py-faster-rcnn

 

非官方代码 tensorflow:

https://github.com/endernewton/tf-faster-rcnn

 

非官方代码 pytorch:

https://github.com/jwyang/faster-rcnn.pytorch

2016 年

OHEM

 

Training Region-based Object Detectors with Online Hard Example Mining | [CVPR' 16]

 

论文:

https://arxiv.org/pdf/1604.03540.pdf

 

官方代码 caffe:

https://github.com/abhi2610/ohem

YOLO v1

 

You Only Look Once: Unified, Real-Time Object Detection | [CVPR' 16]

 

论文:

https://arxiv.org/pdf/1506.02640.pdf

官方代码 c:

https://pjreddie.com/darknet/yolo/

SSD

SSD: Single Shot MultiBox Detector | [ECCV' 16]

 

论文:

https://arxiv.org/pdf/1512.02325.pdf

 

官方代码 caffe:

https://github.com/weiliu89/caffe/tree/ssd

 

非官方代码 tensorflow:

https://github.com/balancap/SSD-Tensorflow

 

非官方代码 pytorch:

https://github.com/amdegroot/ssd.pytorch

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks | [NIPS' 16]

 

论文:

https://arxiv.org/pdf/1605.06409.pdf

 

官方代码 caffe:

https://github.com/daijifeng001/R-FCN

 

非官方代码 caffe:

https://github.com/YuwenXiong/py-R-FCN

2017 年

YOLO v2

 

YOLO9000: Better, Faster, Stronger | [CVPR' 17]

 

论文:

https://arxiv.org/pdf/1612.08242.pdf

 

官方代码 c:

https://pjreddie.com/darknet/yolo/

 

非官方代码 caffe:

https://github.com/quhezheng/caffe_yolo_v2

 

非官方代码 tensorflow:

https://github.com/nilboy/tensorflow-yolo

 

非官方代码 tensorflow:

https://github.com/sualab/object-detection-yolov2

 

非官方代码 pytorch:

https://github.com/longcw/yolo2-pytorch

FPN

 

Feature Pyramid Networks for Object Detection | [CVPR' 17]

 

论文:

http://openaccess.thecvf.com/content_cvpr_2017/papers/Lin_Feature_Pyramid_Networks_CVPR_2017_paper.pdf

 

非官方代码 caffe:

https://github.com/unsky/FPN

RetinaNet

 

Focal Loss for Dense Object Detection | [ICCV' 17]

 

论文:

https://arxiv.org/pdf/1708.02002.pdf

 

官方代码 keras:

https://github.com/fizyr/keras-retinanet

 

非官方代码 pytorch:

https://github.com/kuangliu/pytorch-retinanet

 

非官方代码 mxnet:

https://github.com/unsky/RetinaNet

 

非官方代码 tensorflow:

https://github.com/tensorflow/tpu/tree/master/models/official/retinanet

Mask R-CNN

 

Mask R-CNN | [ICCV' 17]

 

论文:

http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf

 

官方代码 caffe2:

https://github.com/facebookresearch/Detectron

 

非官方代码 tensorflow:

https://github.com/matterport/Mask_RCNN

 

非官方代码 tensorflow:

https://github.com/CharlesShang/FastMaskRCNN

 

非官方代码 pytorch:

https://github.com/multimodallearning/pytorch-mask-rcnn

2018 年

YOLO v3

 

YOLOv3: An Incremental Improvement | [arXiv' 18]

 

论文:

https://pjreddie.com/media/files/papers/YOLOv3.pdf

 

官方代码 c:

https://pjreddie.com/darknet/yolo/

 

非官方代码 pytorch:

https://github.com/ayooshkathuria/pytorch-yolo-v3

 

非官方代码 pytorch:

https://github.com/eriklindernoren/PyTorch-YOLOv3

 

非官方代码 keras:

https://github.com/qqwweee/keras-yolo3

 

非官方代码 tensorflow:

https://github.com/mystic123/tensorflow-yolo-v3

RefineDet

 

Single-Shot Refinement Neural Network for Object Detection | [CVPR' 18]

 

论文:

http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_Single-Shot_Refinement_Neural_CVPR_2018_paper.pdf

 

官方代码 caffe:

https://github.com/sfzhang15/RefineDet

 

非官方代码 chainer:

https://github.com/fukatani/RefineDet_chainer

 

非官方代码 pytorch:

https://github.com/lzx1413/PytorchSSD

2019 年

M2Det

 

M2Det: A Single-Shot Object Detector based on Multi-Level Feature Pyramid Network | [AAAI' 19]

 

论文:

https://arxiv.org/pdf/1811.04533.pdf

官方代码 pytorch:

https://github.com/qijiezhao/M2Det

2020 年

Spiking-YOLO

Spiking-YOLO: Spiking Neural Network for Real-time Object Detection | [AAAI' 20]

论文:

https://arxiv.org/pdf/1903.06530.pdf

数据集论文篇

同时作者也列出了以上模型通常使用的公开数据集:VOC、ILSVRC、COCO,如下表所示:

用于目标检测的数据集相关论文如下:

在线教育多年教育经验 曾任职某里P7 主要从事数据挖掘和AI 有想法深入学习加qq:2586251002 

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值