深度残差收缩网络之二:网络结构

深度残差收缩网络(Deep Residual Shrinkage Network)是深度残差学习(Deep Residual Network, ResNet)的一种改进,发表在IEEE Transactions on Industrial Informatics上,面向的是数据包含噪声的情况。

1. 回顾一下深度残差网络的结构

在下图中,(a)-(c)分别是三种残差模块,(d)是深度残差网络的整体示意图。BN指的是批标准化(Batch Normalization),ReLU指的是整流线性单元激活函数(Rectifier Linear Unit),Conv指的是卷积层(Convolutional layer),Identity shortcut指的是跨层的恒等映射,RBU指的是残差模块(Residual Building Unit),GAP是全局均值池化(Global Average Pooling),FC是全连接层(Fully Connected Layer)。

C表示特征图的通道数,W表示特征图的宽度,1表示特征图的高度始终为1(这是因为这篇文章以一维的振动信号作为输入)。

在Conv后的括号中,K表示卷积层中卷积核的个数。当K=C时,输出特征图的通道数为C。当K=2C时,输出特征图的通道数为2C。/2表示的是卷积核每次移动的步长为2,从而使得输出特征图的宽度减半。

我们可以看到,在图(a

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值