深度残差收缩网络之五:代码实现

点击关注我 然后看我资料 + 群 可以免费获取学习资料哈

深度残差收缩网络其实是一种通用的特征学习方法,是深度残差网络ResNet、注意力机制和软阈值化的集成,可以用于图像分类。本文采用TensorFlow 1.0和TFLearn 0.3.2,编写了图像分类的程序,采用的图像数据为CIFAR-10。CIFAR-10是一个非常常用的图像数据集,包含10个类别的图像。可以在这个网址找到具体介绍:https://www.cs.toronto.edu/~kriz/cifar.html

参照ResNet代码(https://github.com/tflearn/tflearn/blob/master/examples/images/residual_network_cifar10.py ),所编写的深度残差收缩网络的代码如下:

 
  1. # -*- coding: utf-8 -*-
  2.  
  3.  
  4.  
  5. import tflearn
  6. import tensorflow as tf</
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值